Polymer-cushioned bilayers. I. A structural study of various preparation methods using neutron reflectometry.

نویسندگان

  • J Y Wong
  • J Majewski
  • M Seitz
  • C K Park
  • J N Israelachvili
  • G S Smith
چکیده

This neutron reflectometry study evaluates the structures resulting from different methods of preparing polymer-cushioned lipid bilayers. Four different techniques to deposit a dimyristoylphosphatidylcholine (DMPC) bilayer onto a polyethylenimine (PEI)-coated quartz substrate were examined: 1) vesicle adsorption onto a previously dried polymer layer; 2) vesicle adsorption onto a bare substrate, followed by polymer adsorption; and 3, 4) Langmuir-Blodgett vertical deposition of a lipid monolayer spread over a polymer-containing subphase to form a polymer-supported lipid monolayer, followed by formation of the outer lipid monolayer by either 3) horizontal deposition of the lipid monolayer or 4) vesicle adsorption. We show that the initial conditions of the polymer layer are a critical factor for the successful formation of our desired structure, i.e., a continuous bilayer atop a hydrated PEI layer. Our desired structure was found for all methods investigated except the horizontal deposition. The interaction forces between these polymer-supported bilayers are investigated in a separate paper (Wong, J. Y., C. K. Park, M. Seitz, and J. Israelachvili. 1999. Biophys. J. 77:1458-1468), which indicate that the presence of the polymer cushion significantly alters the interaction potential. These polymer-supported bilayers could serve as model systems for the study of transmembrane proteins under conditions more closely mimicking real cellular membrane environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural studies of polymer-cushioned lipid bilayers.

The structure of softly supported polymer-cushioned lipid bilayers, prepared in two different ways at the quartz-solution interface, were determined using neutron reflectometry. The polymer cushion consisted of a thin layer of branched, cationic polyethyleneimine (PEI), and the bilayers were formed by adsorption of small unilamellar dimyristoylphosphatidylcholine (DMPC) vesicles. When vesicles ...

متن کامل

X-ray and neutron surface scattering for studying lipid/polymer assemblies at the air-liquid and solid-liquid interfaces.

Simple mono- and bilayers, built of amphiphilic molecules and prepared at air-liquid or solid-liquid interfaces, can be used as models to study such effects as water penetration, hydrocarbon chain packing, and structural changes due to head group modification. In the paper, we will discuss neutron and X-ray reflectometry and grazing incidence X-ray diffraction techniques used to explore structu...

متن کامل

Membranes at interfaces: structure studies by AFM and time-resolved neutron reflectivity.

Model biomembranes are either organized as vesicles or as planar bilayers. These represent two principally different model systems for the investigation of biophysical processes in single bilayers. Here we report on supported planar layers prepared by precipitation of lipid molecules from vesicles in a suspension [1], and on initial studies of small peptides interacting with such model membrane...

متن کامل

Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function

Solid supported bilayer lipid membranes are model systems to mimic natural cell membranes in order to understand structural and functional properties of such systems. The use of a model system allows for the use of a wide variety of analytical tools including atomic force microscopy, impedance spectroscopy, neutron reflectometry, and surface plasmon resonance spectroscopy. Among the large numbe...

متن کامل

Modification of tethered bilayers by phospholipid exchange with vesicles.

Phosphatidylcholine and cholesterol exchange between vesicles and planar tethered bilayer lipid membranes (tBLMs) was demonstrated from electrochemical impedance spectroscopy (EIS), fluorescence microscopy (FM), and neutron reflectometry (NR) data. Cholesterol is incorporated into the tBLMs, as determined by the functional reconstitution of the pore forming toxin α-hemolysin (EIS data), attaini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 77 3  شماره 

صفحات  -

تاریخ انتشار 1999